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Abstract.

The absolute necessity for rational therapy in the face of rampant drug resistance places increasing

importance on the accuracy of malaria diagnosis. Giemsa microscopy and rapid diagnostic tests (RDTSs) represent the
two diagnostics most likely to have the largest impact on malaria control today. These two methods, each with char-
acteristic strengths and limitations, together represent the best hope for accurate diagnosis as a key component of
successful malaria control. This review addresses the quality issues with current malaria diagnostics and presents data
from recent rapid diagnostic test trials. Reduction of malaria morbidity and drug resistance intensity plus the associated
economic loss of these two factors require urgent scaling up of the quality of parasite-based diagnostic methods. An
investment in anti-malarial drug development or malaria vaccine development should be accompanied by a parallel
commitment to improve diagnostic tools and their availability to people living in malarious areas.

INTRODUCTION

The wide range of 200 million in the frequently quoted
“300-500 million cases per year” in itself reflects the lack of
precision of current malaria statistics. Any attempt to esti-
mate the number of malaria cases globally is likely to become
subject to argument.'? Had accurate malaria diagnosis been
achieved together with an improved public health data re-
porting system and healthcare access, such a conjecture would
be lessened.

Clinical diagnosis is imprecise but remains the basis of
therapeutic care for the majority of febrile patients in malaria
endemic areas, where laboratory support is often out of reach.
Scientific quantification or interpretation of the effects of ma-
laria misdiagnosis on the treatment decision, epidemiologic
records, or clinical studies has not been adequately investi-
gated. Despite an obvious need for improvement, malaria
diagnosis is the most neglected area of malaria research, ac-
counting for less than 0.25% ($700,000) of the U.S.$323 mil-
lion investment in research and development in 2004.7

Rational therapy of malaria is essential to avoid non-target
effects, to delay the advent of resistance, and to save cost on
alternative drugs. Accurate diagnosis is the only way of ef-
fecting rational therapy. Confirmatory diagnosis before treat-
ment initiation recently regained attention, partly influenced
by the spread of drug resistance and thus the requirement of
more expensive drugs unaffordable to resource-poor coun-
tries.* This review focuses on microscopy and rapid diagnostic
tests (RDTs), the two malaria diagnostics that are likely to
have the largest impact on malaria control today.

MALARIA DIAGNOSTIC METHODS

Clinical diagnosis. Clinical diagnosis is the least expensive,
most commonly used method and is the basis for self-
treatment. However, the overlapping of malaria symptoms
with other tropical diseases impairs its specificity and there-
fore encourages the indiscriminate use of anti-malarials for
managing febrile conditions in endemic areas. Although
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highly debatable, this practice was understandable in the past
when inexpensive and well-tolerated anti-malarials were still
effective.>®

Accuracy of a clinical diagnosis varies with the level of
endemicity, malaria season, and age group. No single clinical
algorithm is a universal predictor.”® Studies of fever cases in
populations with different malaria-attributable proportions
from Philippines, Sri Lanka, Thailand, Mali, Chad, Tanzania,
and Kenya have shown a wide range of percentages (40-80%)
of malaria over-diagnosis and its associated potential for eco-
nomic loss.”!?

Only in children in high-transmission areas can clinical di-
agnosis determine the treatment decision.'*' In this situa-
tion, a majority of the population is chronically parasitemic;
malaria may be concomitant but not the responsible agent of
the febrile illness.

Biologic diagnosis. In 1904, Gustav Giemsa introduced a
mixture of methylene blue and eosin stains.'® Microscopic
examination of Giemsa-stained blood smears has subse-
quently become the gold standard of malaria diagnosis.

In the past 50 years, alternative methods became available
(e.g., detection of malaria antibodies by indirect immunofluo-
rescence antibody assay [[FA] and enzyme-linked immu-
nosorbent assays [ELISA]).'”'® Later, scientists developed
methods to detect malaria antigens, the most significant being
the immunochromatographic assay, which forms the basis of
commercial malaria RDTs available today.'®-*°

Molecular methods, namely, DNA probes and polymerase
chain reaction (PCR) were introduced in the 1980s-1990s.%'**
Methods for detecting malaria parasites by fluorescent stain-
ing also emerged (e.g., by the quantitative buffy coat [QBC]
analysis, interference filter system for acridine orange-stained
thin blood smear, and flow cytometry).>*>~2° Detection of ma-
laria pigments by depolarized laser light and mass spectrom-
etry showed limited success.?”*%

Giemsa microscopy. In spite of a variation in the basic tar-
gets of malaria control from elimination of mortality and
minimizing morbidity to reducing prevalence or eradication,
all malarious countries share a common need for reliable
laboratory-diagnostic services to ensure early and rational
treatment, reliable epidemiologic information, and epidemic
preparedness. Giemsa microscopy is regarded as the most
suitable diagnostic instrument for malaria control because it is
inexpensive to perform, able to differentiate malaria species,
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FIGURE 1. Giemsa-stained thick blood films showing early trophozoites (ring form, N = 7) of P. falciparum in a specimen with high parasite
density (A), two ring forms that look like artifacts (B), and various artifacts that resemble P. falciparum trophozoites on thick (C-F) and thin

(G-H) films. (Courtesy of J. K. Baird.)

and quantify parasites. In the age of high-quality light-
emitting diode (LED) illumination and solar battery chargers,
microscopy has become more feasible in remote areas. How-
ever, microscopy requires well-trained, competent microsco-
pists and rigorous maintenance of functional infrastructures
plus effective quality control (QC) and quality assurance
(QA).

During the Malaria Eradication (ME) era, microscopy was
the mainstay of malaria diagnosis. Despite the organizational
and logistic challenges, numerous countries accounting for
50% of the residents of originally malarious areas successfully
eliminated the disease.”® Many countries, particularly in
southern Asia and the Americas, however, did not succeed in
creating or maintaining the system and eventually diagnostic
services were given little attention. ME was never considered
a feasible objective in tropical Africa.

Countries with well-run ME programs had the advantage of
a time buffer between the collection and examination of
blood samples from suspected malaria cases, afforded by the
then still effective “presumptive treatment” at the time of
blood sampling. In contrast, the countries where ME failed
became increasingly affected by drug resistance and the ma-
jority of them were unprepared for dealing with the new situ-
ation caused by resistance of P. falciparum to 4-aminoquino-
lines and antifolates. Artemisinin-based combination therapy
(ACT) either already is or will soon be the first-line medica-
tion for P. falciparum treatment in most affected countries.
Accurate diagnosis is deemed essential before prescribing
ACT, which may be less well-tolerated and more expensive.

Laboratory and field accuracy. The detection threshold in
Giemsa-stained thick blood film has been estimated to be
4-20 parasites/mcL.2'*%3! Under field conditions, a threshold
of about 50-100 parasites/mcL blood is more realistic.’*>* In
remote settings with less skilled microscopists and poor
equipment, a still higher threshold is likely.

Poor microscopy has long been recognized in practice and
is a function of multiple factors, including training and skills
maintenance, slide preparation techniques, workload, condi-
tion of the microscope, and quality of essential laboratory
supplies. Even among local laboratories with similar equip-

ment and equal training and among reputed experts, abilities
vary significantly.***> This variability combined with the risk
of untreated malaria in the face of safe, inexpensive therapy
in the past led clinicians to treat febrile patients without re-
gard to the laboratory results.'?¢7

Even in developed countries, expert malaria microscopists
are scarce and impaired microscopy-based diagnosis in hos-
pital laboratories is common.3-3%40

False positive. In comparison to expert microscopy, a wide
range of poor specificity of local microscopy is reported.**?
Poor blood film preparation generates artifacts commonly
mistaken for malaria parasites, including bacteria, fungi, stain
precipitation, and dirt and cell debris (Figures 1-3).** Normal
blood components such as platelets also confound diagnosis.
Improved training and higher quality of smear preparation
and staining are required to reduce false positive reading.

False negative. The chance of false negative results
increases with decreasing parasite densities.*>** Greater
microscopist experience and increased examination time/
number of microscopic fields examined reduce such an er-
ror.*’** Recommended numbers of fields on a thick blood
film required for examination before declaring a slide nega-
tive vary from 100-400.3%444>

Errors in species identification. A well-trained, proficient
microscopist should be able to recognize the Plasmodium spe-
cies correctly in thick blood films at relatively low parasite
density. Sometimes it may be necessary to check the thin film
for morphologic, differential-diagnostic details such as eryth-
rocyte size, shape, and crenation, characteristic dots in the
erythrocyte stroma, pigment structure and color, as well as

FIGURE 2. Giemsa-stained thick blood films showing a growing
trophozoite of P. vivax (A) and artifacts that could be mistaken for P.
vivax trophozoites (B and C). (Courtesy of J. K. Baird.)
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FIGURE 3. Errors in diagnosis are more common when Giemsa
staining is poor. Compare the P. falciparum gametocyte on a thin film
in (A) to the poorly stained, elongate-shaped artifact that looks like
a P. falciparum gametocyte in (B); similarly, the well-stained band-
form of P. malariae in (C) to what appears to be a band-form but is
not, in (D). Images of artifacts were taken from blood smears of
healthy donors.
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schizonts. Most documented species errors probably involve
differentiating between P. vivax and P. ovale or recognizing
occasional human infections with simian plasmodia such as
P. knowlesi.*® However, even failure to differentiate P. fal-
ciparum from P. vivax, the two most common species, can be
quite frequent in routine microscopy but is underre-
ported.***? Underreporting of mixed-species infections is also
common.*

Errors in the estimation of parasite density. Parasite enu-
meration provides useful clinical management guidance (e.g.,
as an indication to initiate exchange transfusion) as well as for
clinical trials and epidemiologic studies.*® Several methods of
estimation exist.>*2%4’-5° No standard procedure exists for
counting parasites on a thick film.

Variability in blood film preparation techniques and read-
ing rules account for much of the variability in parasite
counts.>'!" Counting against white blood cells on a thick film
and against red blood cells on a thin film, for example, could
yield a large difference.>® Such variability could significantly
affect research outcomes.

Use of microscopy in research. Microscopy remains the
gold standard and the only U.S. Food and Drug Administra-
tion (FDA)-approved endpoint for assessing the outcomes of
drug and vaccine trials, and for serving as a reference stan-
dard in the evaluation of new tools for malaria diagnosis. In
clinical trials, false positive diagnoses lower the apparent ef-
ficacy of anti-malarial agents, subjecting potentially effective
drugs or vaccines to unjustified discarding.>® False negative
results could lead to overly optimistic outcomes of interven-
tions (unless a follow-up blood smear is possible) or under-
estimation of the specificity of new diagnostics under evalu-
ation.

Improving the current practice of microscopy. Some iso-
lated efforts to improve malaria microscopy exist in the de-
veloped world. An on-line, self-test for competency in malaria
microscopy now exists.>* The Malaria Research and Refer-
ence Reagent Resource Center (MR4) in Manassas, VA,
makes available on loan sets of thick and thin malaria smears
with validated parasite content (http//www.malaria.mr4.org).

National malaria control programs train local microscopists
with variable degrees of success. WHO training materials are
still widely used, although an update is necessary.**>> Im-
proving diagnostic accuracy in malaria control systems can be
both technically and financially challenging.>® Continued su-
pervision and support are essential to ensure sustainability of
accurate diagnosis and thereby appropriate treatment.

An effective QC/QA system engaging different organiza-
tional levels is needed. This involves standardization of pro-
cedures and establishment of national-level diagnostics cen-
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TABLE 1
Results of selected trials

First author/ No. of
publication year RDT product name Target antigens Study site/Year subjects % Malaria positive*
1. Studies in endemic countries
Buchachart, 200472 KAT™.-Quick (KAT Medical, HRP-2 Thailand/2000 90 100% (Pf 56%)
South Africa)
Fernando, 2004 ICT Malaria Pf/Pv (AMRAD HRP-2 and Sri Lanka/2002 328 38% (Pf 19%,
ICT, Australia) Aldolase Pv 81%)
Forney, 2003 ParaSight F + V{ “FV 99-2” HRP-2 Thailand and 1,887 41%; (Pf 44%,
prototype (Becton Dickinson, Pv-specifict Peru/1999 Pv 56%)
US.A)
Mboera, 200673 Paracheck Pf® (Orchid HRP-2 Tanzania 1,655 23% (Pf 100%)
Biomedical Systems, India)
Pattanasin, 200374 Paracheck Pf® (Orchid Biomedical HRP-2 Thailand/2002 271 53% (Pf 35%,
Systems, India) non-Pf 65%)
OptiMAL-IT® (Diamed, Switzerland) pLDH
Igbal, 20037° OptiMAL (Flow, Inc., U.S.A.) pLDH Pakistan 930 42% (Pf 38%, Pv 55%,
mixed 7%)
2. Studies of returning travelers in non-endemic countries
Farcas, 20037° NOW® ICT (Binax, U.S.A.) HRP-2 and Canada/ 256 82% (Pf 50%,
Aldolase 1999-2003 non-Pf 50%)
Grobusch, 200377 ParaSightF (Becton Dickinson, HRP-2 Germany/ 554 26%
US.A)§ 1998-2001
ICT Malaria P.f. (ICT Diagnostics, HRP-2 226 23%
Australia)
ICT Malaria Pf/Pv (Binax, U.S.A.) HRP-2 492 27%
OptiMAL (Flow Inc., U.S.A.) pLDH 539 24%
Palmer, 200378 OptiMAL (Flow, Inc., U.S.A.) pLDH US.A. 216 20% (Pf 66%,
non-Pf 34%)
Richardson, 20027° Makromed® (Makro Medical, HRP-2 Canada/ 200 75% (Pf 66%,
Pty. Ltd., South Africa) 1995-1997 non-Pf 34%)

* By Giemsa thick film, or by PCR where indicated; tObsolete; #Proprietary (Becton Dickinson, U.S.A.); §Obselete.

Pf = P. falciparum; Pv = P. vivax.

ters responsible for developing training modules, training,
identifying the materials needed to support microscopy QA,
and improving the performance and maintaining the compe-
tence of microscopists. Allocating a small percentage of the
national malaria control budget to microscopy QA could
yield large benefits through targeted use of costly drugs.’” At
an international level, a comprehensive repository of malaria
slides to provide external validity and certification of micros-
copists would be useful to both malaria research and con-
trol.>>=7

Rapid Diagnostic Test (RDT). Rapid diagnostic test is a
device that detects malaria antigen in a small amount of
blood, usually 5-15 pL, by immunochromatographic assay
with monoclonal antibodies directed against the target para-
site antigen and impregnated on a test strip. The result, usu-
ally a colored test line, is obtained in 5-20 min. RDTs require
no capital investment or electricity, are simple to perform,
and are easy to interpret.

Current RDT test formats (e.g., in a plastic cassette enclo-
sure, or attached to cardboard) promote ease-of-use and
safety in comparison to the earlier assays of the early and
mid-1990s. RDT consumption, especially in developing coun-
tries, has increased for the past few years. One product re-
ceived U.S. FDA clearance in June 2007. Most commonly
used RDTs only detect P. falciparum; however, RDTs that
distinguish P. falciparum from the three non-falciparum
species are available. Commercial tests are manufactured
with different combinations of target antigens to suit the local
malaria epidemiology (http://www.wpro.who.int/sites/rdt/
documents/).>® Histidine-Rich Protein 2 (HRP-2) is the most

common malaria antigen targeted and is specific for P. falci-
parum. Some commercial tests carry both an assay for genus-
specific aldolase enzyme and an HRP-2 assay thus making it
capable of distinguishing an infection with non-P. falciparum
only from that due to P. falciparum (with/without non-
falciparum). Parasite lactate dehydrogenase (pLDH) en-
zymes are the other major group of targeted antigens. Mono-
clonal antibodies against pLDH are commercially available
for the detection of Plasmodium spp. (pan-malaria), P. fal-
ciparum, and P. vivax. The P. vivax-specific assay is new and
not yet adequately evaluated. Test line configuration and in-
terpretation of RDT results vary with products (Figure 4).
Products that incorporate an HRP-2 assay with a pan-malaria
pLDH assay are also available.

As opposed to HRP-2, which often persists in the patient’s
blood for weeks after successful treatment, pLDH is a more
appropriate target for treatment monitoring.’® However,
plasmodial gametocytes also produce pLDH and so a pLDH
test may remain positive despite clearance of the asexual
parasite forms.®® Persistent HRP-2, on the other hand, could
be an advantage in detecting low-level, fluctuating para-
sitemia in chronic malaria.®® Both HRP-2 and pLDH-based
tests have been used with peripheral and placental blood
specimens for the detection of malaria in pregnancy with vari-
able outcomes.®* %

Accuracy of RDTs. To be a useful diagnostic, RDTs must
achieve greater than 95% sensitivity."* Most RDTs today
have achieved this goal for P. falciparum, but not for non-P.
falciparum. In the evaluation of an HRP-2 prototype assay in
Thailand and Peru, P. falciparum sensitivity was found to be
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TABLE 1
Continued
First author/ Parasite density
publication year (parasites/mcL) Sensitivity Specificity Comments
1. Studies in endemic countries
Buchachart, 200472 >80 Pf 96% Pf 93% Previously diagnosed malaria patients
only.
Fernando, 2004 9% of Pv and 48% Pf 100% Pf 100% Test line intensity and parasite
of Pf had = 1000 Pv 70% Pv 99% density correlation noted for Pv.
Forney, 2003% 15% of Pf had = 500 Pf 98% Pf 93% 83% sensitivity for Pf = 500/mcL
23% of Pv had = 500 Pv 87% Pv 87% 55% sensitivity for Pv = 500/mcL
Mboera, 20067 =40 Pf 90% Pf 97% Asymptomatic individuals included.
RDT storage conditions noted.
Pattanasin, 20037* 28% of Pf and 38% Pf 90% Pf 96% Recent history of falciparum malaria
of Pv had = 500 explained most of the false positive
test results (N = 9)
Pf 88% Pf 92% 70% sensitivity for Pf and 64% for
Non-Pf 65% Non-Pf 99% non-Pf with densities 100-500/mcL.
Igbal, 20037 12% (all species Pt 85% Pf 99% RDT performed better than microscopy
combined) had < 500 Pv 76% Pv 99% at remote clinics.
2. Studies of returning travelers in non-endemic countries
Farcas, 20037° 4% Pf and 6% Pv Pf 94% 99% overall Reference standard = PCR.
had = 100 Non-Pf 84%
Grobusch, 200377 Not provided Pf 95% Pf 97% Only Pf was evaluated. In a cohort of 111
patients followed, the maximum number
Pf 91% Pf 99% of days that RDT remains positive
following parasitological cure ranged
Pf 98% Pf 99% from 2 days for OptiMAL, to 34 days
Pt 76% Pf 100% for ICT Malaria Pf/Pv and 42 days for
ParaSight F.
Palmer, 20037® Not provided 98% (Pf and 100% Total 32 Pf and 11 non-Pf cases only.
Pv combined)
Richardson, 20027 8% Pf had < 100 Pt 97% Pf 96% 94% sensitivity for Pf 100-1000/mcL.

Reference standard = PCR.

100% for parasite density = 500/mcL and 83% for < 500/
mcL.°® Roughly, RDT sensitivity declines at parasite densities
< 500/mcL blood for P. falciparum and < 5,000/mcL blood for
P. vivax. Decreased test line intensity with parasite density
was also demonstrated for both an aldolase assay (pan-
malaria specific) used to detect non-P. falciparum and an
HRP-2 assay.®”:%®

In spite of over 100 published RDT trial reports, compara-
tive assessment is difficult because (1) trials do not share
common guidelines; (2) clinical and epidemiologic character-
istics of the study populations, especially the parasitemia level
vary; (3) reference standards are different; even among those
using Giemsa microscopy, reading rules and microscopist
skills vary; and (4) products of different lots may differ in
quality or be damaged by extreme temperature or humidity
during transportation and storage (http:/www.wpro.who.int/
sites/rdt/reviews_trials/).

Early published trials have been summarized elsewhere.
In Table 1, selected trials in diverse populations published in
the past 4 years are listed with their findings. HRP-2 tests
commonly give P. falciparum sensitivity of > 90% in clinical
cases. 00871728082 When accompanied by an aldolase assay,
the non-falciparum sensitivity is usually lower.%¢-68838% For
pLDH assays, results varied among studies and product lots
and variable field stability of the test kits could not be ruled
out. Sensitivity for P. falciparum is excellent (> 95%) in some
studies and poorer (80%+) in others.”*”>788586 Recent stud-
ies suggest that the tests were less sensitive for non-P. falci-
parum than for P. falciparum.”*7>*7 Extremely low sensitivity

69-71

had been reported earlier for both HRP-2 and pLDH tests
and batch-specific problems were suspected.**°? Overall
RDT specificity is commonly above 85%, approaching 100%
when used in some groups of returning non-immune travel-
ers.59,76—79,93

False positive RDT results occur in a few percent of tests.
Cross-reactivity with rheumatoid factor in blood generates a
false positive test line, but replacement of IgG with IgM in
recent products reduces this problem.’*°® Cross-reactivity
with heterophile antibodies may also occur.?® Occasional
false negative results may be caused by deletion or mutation
of the hrp-2 gene.’ It has been suggested that anti-HRP-2
antibodies in humans may explain why some tests were nega-
tive despite significant parasitemia.’® Presence of an inhibitor
in the patient’s blood preventing development of the control
line is also noted.”

Several factors in the manufacturing process as well as en-
vironmental conditions may affect RDT performance.’®’?
Manufacturers usually recommend 4°-30°C as the optimal
temperature range. In practice, exposure of RDTs to > 70%
humidity and/or > 30°C frequently occurs in the tropics. QC/
QA measures are important to ensure that the purchased
products meet performance expectations and that product
quality is maintained through the delivery process to the pe-
riphery of the healthcare system. The recently introduced
WHO initiative of RDT product testing and QA aims to stan-
dardize testing of RDTs and to assist countries and manufac-
turers with distribution and use.”® Recommended guidelines
for the field evaluation of malaria RDTs are available.'®
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These guidelines will allow for better comparisons between
test formation and across populations.

Where and when to use RDTs. In developed countries,
RDTs can be useful in screening febrile returnees from en-
demic areas.’*7"!°! Self-use by travelers, however, produces
variable outcomes.'°*!%* In developing countries, RDTs
make obsolete the sole dependence on clinical diagnosis for
malaria in remote areas, where good microscopy has failed or
never reached. RDTs are also recommended in situations ex-
ceeding microscopy capability, such as in an outbreak or in
occupationally exposed groups.'® As RDTs improve, includ-
ing in sensitivity for P. vivax and in ability to measure para-
sitemia levels, at least semi-quantitatively, the scope of RDT
applications will expand. Current RDTs are not intended to
replace microscopy.

Successful implementation of RDTs requires complex plan-
ning. Use of RDTs at peripheral levels such as by health
workers, in informal health sectors and for self-diagnosis/self-
treatment is a challenge.®® Implementation requires new lo-
cal-level algorithms for actions to be taken based on RDT
results (http://www.wpro.who.int/sites/rdt/home.htm).'**

Price and cost effectiveness. The current market price of an
RDT in developing countries is about U.S.$0.55-U.S.$1.50
(depending on the number of targeted species and the order
quantity), compared with microscopy at U.S.$0.12-$0.40 per
malaria smear. However, in the face of the rising cost of ef-
fective anti-malarial therapy, over-diagnosis can quickly deci-
mate pharmacy budgets. Prompt and accurate diagnosis will
not only improve malaria treatment, but possibly reduce mor-
bidity due to other febrile illnesses. Therefore RDTs should
be considered as tools for the composite management of fe-
brile illnesses.

The cost effectiveness of RDTs vary with malaria preva-
lence, RDT cost, cost of anti-malarial treatment, and the cost
of treatment of other febrile illnesses when malaria has been
ruled out. RDTs become more cost effective as the price of
anti-malarials go up. A mathematical model that assists in
decision making of RDT introduction in areas of high-level
malaria transmission is available online (http://www.
wpro.who.int/sites/rdt/Assessing+RDT+Cost-Effectiveness.
htm).

CONCLUSIONS

Although a 1988 WHO report stated, “A working micro-
scope should be available for use in the furthest periphery of
the health care services,” it is not until faced with a potential
therapeutic impasse that an effort to scale-up microscopy (in
particular, its QC/QA) is reconsidered. International health
agencies and the scientific community engaged in epidemiol-
ogy, drug, and vaccine work need to urgently put forth an
effort to improve the global capacity to diagnose malaria.
Effective malaria microscopy QA could create a culture of
diagnostic excellence and professionalism among malaria
laboratory technicians throughout the developing and devel-
oped world.

Quality RDT is a valuable complement to microscopy be-
cause it helps expand the coverage of parasite-based diagnosis
to the periphery and minimize exclusively clinical diagnosis.
The cost of improved malaria diagnosis will inevitably in-
crease, whether by investment in microscopy or RDTs or

both. However, such investment offers a more promising
strategy to deal with increasing costs of therapy driven by
drug resistance. Today’s multi-million dollar investment in
anti-malarial drug development should be accompanied by a
parallel commitment to improve diagnostic tools and their
availability to those living in malarious areas.
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